
Proposed algorithm to accomplish our goal:
Input: Execution trace encoded in a prescribed form, T
Output: Set of patterns described in the upper section, P
Data-preparation:
1. Prepare message-event mapping database:

{1:{src¹:dest¹:method�},..
........, m:{src�:dest�:method�}}

2. Group events by clocks and prepare event database:
{{e₁,e₂,e₅},….{e₅}…..{e₆,e₂,e₂}}ϵT

3. Find unique events {E} and their frequency throughout
the trace. For example; Unique events = {e₁,e₂, ……., em}
Event_freq: {e₁: 23, e₂: 45, …….., em:46}

Find rules of two events:
1. From the unique event list, take every possible pairs of

two different events.
2. Generate a projected trace for each pair from the input

trace that is consist of the events in the pair only.
{e₁,e₁,e₂,e₂,e₁,e₂……..,e₁}

3. Find support for this pair or rule: find number of
possible pairs from the projected trace keeping them
separated by clocks. Like; {e₁, e₂ :15, e₁,e₃: 24,……, e(n-
�),en:7 }

4. Find confidence/recall for each pair using standard
confidence calculation method.
{e(n-�), en : Confidence, Recall)}

Grow rule of more events:
For a rule (e₁,e₂):
1. if it has confidence of 100%, find another rule (e₂,e₃)

with confidence of 100%, and create a new rule (e₁,e₂,e₃).
2. if it has recall of 100%, find another rule of (e₀,e₁) with

recall of 100%, and create new rule (e₀,e₁,e₂).
3. To reduce search space further, apply following pruning

strategy for rule (e₁,e₂); e₁:{src¹:dest¹} and e₂:{src�:dest�}
check if dest¹ = src�. If this condition does not hold,
discard these rules.

Work Flow:

Specification Mining From Message Flow
For SoC Validation

Md Rubel Ahmed, Yuting Cao, Hao Zheng
Department of Computer Science and Engineering, University of South Florida

Abstract

The quality of an SoC validation depends on the quality of
specifications against which it has been tested. So effective
SoC validation requires well-documented specifications.
However, this specifications are often incomplete, contain
inconsistencies, or even may not exist. In this work, we try to
infer validation specifications from the message flow of SoC
execution traces using traditional and custom data mining
techniques. Message flows governs how IP blocks in an SoC
design communicate with each other to realize system-level
functionality. Sequential pattern mining is used along with
domain specific optimization mechanisms to make the
mining process more efficient and accurate. We also
consider the soundness of our approach through out the
work.

Table 1: Search space comparison between proposed approach and
permutation based approach.

technique. This technique is very popular and efficient for
search space reduction. But we can not utilize this technique
in our algorithm for the reason that, some flow may have a
huge time distance between start event and the termination
event. Sliding window can find never such episode because
of this distance though it is a valid rule for many of the
hardware systems. So we employ different event selection
technique based on confidence, recall and heuristic to
ensure that no valid rule is skipped in our mined pattern.
That’s how we ensure the soundness of our algorithm.

Rule Evaluation:
The soundness of the algorithm is our first priority. We
define soundness and accuracy of our approach using
following metrics.
Let P be the set of all valid patterns that are known, M be
the set of patterns mined using our method.
Soundness: P ⊆ M holds.

Accuracy:
|ࡼ|
|ࡹ|

We define Mp as the subset of patterns from M such that:
{ Mp | Mp ∈ P and Mp ∈ M }

And the soundness of M can be defined as:

Soundness (M_P) =
|࢖ࡹ|
|ࡼ|

The soundness of M over P defines the percentage of correct
patterns mined among the total of correct patterns (P). As
mining result’s soundness increases, the desired patterns
included in the result increases, regardless of the total
number of patterns (noise patterns) generated.
On the base of the soundness, for pattern sets M with high
soundness, we use accuracy to evaluate its ability of filtering
out irrelevant, unimportant patterns.

Soundness (M_P) =
|࢖ࡹ|
|ࡹ|

The accuracy M over P defines the percentage of correct
patterns mined among all patterns in M. A mining
algorithm that produces high accuracy result means it
can generate as set of correct patterns with minimal
noises.

Method

Problem Statement
Our proposed approach for specification mining is done at
two levels: On-chip fabric and Application.

A

Fig. 1: Specification Mining Framework

Fabric Level
Mine flow specification such as CPU downstream
write/read etc. The fabric level specification must be valid
across different execution traces as they are supposed to be
implemented by the on-chip fabric. Here, we define patterns
as Sequences of events.

Application Level
Mine patterns among flow specifications that hold across
different applications or tests. For example, the firmware
loading flow should always happen after the firmware
authentication flow. Hence, we define patterns as Sequences
of flows
The base idea came from the hypothesis that General
execution patterns can be mined from example traces of execution,
which can provide correct specification for post silicon validation.
An SoC is a combination of reactive components that works
together to complete a set of tasks required by the user. We
characterize the patterns for mining as:
 Set of events
 Strong ordering rules among them
 In constant environment, every execution trace hold

these rule.

Result Analysis

Mining sequential rule of larger length has always been a
challenging task, especially for concurrent systems. One of
the major problems in this task is exponential rule
explosion. When we have a large number of events to
consider and if we want to find rules of higher length given
that the order is preserved, we face the problem of being out
of enough drive space or some hrs of running time. For
these reason, with the best of our knowledge, no
specification mining work have been done so far that mines
exact ordered rules for concurrent hardware systems. In the
works of episode mining it takes account of a series of
precedent events and mines a series of consequent event for
them. The fundamental difference between episode mining
and our approach is that we can not compromise a single
event order. We mine strict ordering relations among the
events. We try to find rule violations for SoC internal
communication protocols. In practical it is common that
some abnormal behavior exposes only single time in tons of
events. So one such event can drag the whole system into
failure. For these issues we could not apply episode mining
for our problem. Another common strategy in finding
sequential rule is “sliding window”

References

[1] Sandip Ray, Ian G. Harris, Goerschwin Fey, and Mathias
Soeken. Multilevel design understanding: From specification
to logic invited paper. In Proceedings of the 35th International
Conference on Computer-Aided Design, ICCAD ’16, pages 133:1–
133:6, 2016.
[2] W Chen, S. Ray, J Bhadra, M Abadir, and Li-C Wang.
Challenges and trends in modern soc design verification. IEEE
Design Test, 34(5):7–22, Oct 2017.
[3] Matthew B. Dwyer, George S. Avrunin, and James C.
Corbett. Patterns in property specifications for finite-state
verification. In Proceedings of the 21st International Conference on
Software Engineering, ICSE’99, pages 411–420, 1999.
[4] Glenn Ammons, Rastislav Bod ́ık, and James R. Larus.
Mining specifications. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’02, pages 4–16,2002.
[5] Po-Hsien Chang and Li.-C Wang. Automatic assertion
extraction via sequential data mining of simulation traces. In
Proceedings of the 2010 Asia and South Pacific Design Automation
Conference, ASPDAC’10,pages 607–612, 2010.
[6] Wenchao Li, Alessandro Forin, and Sanjit A. Seshia.
Scalable specification mining for verification anddiagnosis.
In Proceedings of the 47th Design Automation Conference, DAC’10,
pages755–760, New York, NY, USA, 2010. ACM.
[7] Samuel Hertz, David Sheridan, and Shobha Vasudevan.
Mining hardware assertions with guidance fromstatic analysis.
Trans. Comp.-Aided Des. Integ. Cir. Sys., 32(6):952–965, June
2013.
[8] A. Danese, F. Filini, and G. Pravadelli. A time-window
based approach for dynamic assertions mining oncontrol
signals. In 2015 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC),pages 246–251, Oct 2015.

Abstract Trace

Generate Rule of length 2

Combine Rules

Apply Heuristic

Benchmark Rules

Silicon
under
debug

System
Flow

monitor

Post-silicon
Trace

AnalysisSilicon
Trace

�=e₁,e₂,..
Trace

Interpretat
ion

Flow
execution

rule

Rule Length Permutation Method Proposed Method

2 1806 1806

3 74046 7360

4 2961840 14720

5 115511760 29440

