
A Comparative Study of Specification Mining
Methods for SoC Communication Traces

Md Rubel Ahmed1, Hao Zheng2
U of South Florida, Tampa, FL

{mdrubelahmed,haozheng}@usf.edu

Parijat Mukherjee3, Mahesh C. Ketkar3, Jin Yang3
Intel, Hillsboro, Folsom, Hillsboro, OR, CA, OR

{parijat.mukherjee,mahesh.c.ketkar,jin.yang}@intel.com

Abstract—This paper aims to study how existing trace mining
methods work, and their strengths and weaknesses in the
context of communication-centric system-on-chip (SoC) traces.
SoC traces are unique because of the inherent concurrency,
which makes SoC trace mining very challenging. We select seven
well-known trace mining methods both from the hardware and
software domains. We perform comprehensive experiments, and
offer our understanding of the pros and cons of each mining
method. We evaluate the interestingness of the mined outcomes
for each tool on a benchmark trace set. This trace benchmark
includes sophisticated communication traces generated synthet-
ically and realistically. We provide a comprehensive analysis of
the performance of the tools, and release the benchmark trace
dataset to facilitate future works in SoC trace mining.

Index Terms—SoC validation, trace analysis, specification min-
ing, SoC execution model, system-on-chip

I. INTRODUCTION

Trace analysis or logging is a widely used debugging
method for hardware and software systems. Tracing has en-
abled many complex systems to grow, evolve, and function
correctly these days. Today’s computing systems are so com-
plex that it is not feasible to debug the tiny SoC in our
wristwatch manually. Many tools and algorithms are intro-
duced to tackle the problem from different perspectives [1].
However, the behavior of a computing system is observed
over its execution traces. Therefore, the attempts to automate
the debugging through trace analysis becomes a rich avenue
of research, and many techniques have been developed. A
systematic comparison of such tools and techniques solely
targeting SoC communication traces can help us understand
these methods’ strengths and weaknesses, and applicability on
SoC trace mining.

Modern SoCs house various intellectual property (IP) blocks
together procured from a wide range of sources. Such SoCs
contain complex and concurrent interconnects to support par-
allel operations. Besides sophisticated system level protocols
are incorporated to realise these operations. Debugging the
correctness of such protocols posses a big challenge as the
design evolves. Hence communication-centric debug is proven
to be more practical than traditional computation-centric debug
methods [2]. Trace analysis helps us to create debug specifi-
cations with statistical rigors. For example, the sample SoC in
Fig. 1 implements two message flows or flow specifications or
IP communication protocols for CPU downstream write. Such
flow specifications are necessary to ensure the correctness of

8

Message types

1 (cpu0:cache:rd_req)
2 (cache:cpu0:rd_resp)
3 (cpu1:cache:rd_req)
4 (cache:cpu1:rd_resp)
5 (cache:mem:rd_req)
6 (mem:cache:rd_resp)

Example flows

1

2

5

6

3

4

Example Trace
1 3 5 1 5 6 2 3 6 2 4 4

5

6

cpu0 cpu1

mem

cache

Fig. 1: A CPU downstream write flow [3] for a sample SoC

the corresponding write policies. Still, in practice, they are
not available as the design evolves, and manually updating
the protocol documentation is often impractical for large and
complex SoC designs.

There exists a pool of tools that can work on the traces, such
as one in eq. 1, and analyze them to find interesting patterns
which can serve as flow specifications. Readers are referred
to [3] to know more about the flows and SoC execution traces.
We want to investigate if the sequential patterns or Ground
Truths GT1 patterns derived from the example flows such as
(1, 2), (1, 5, 6, 2), (3, 4), (3, 5, 6, 4) can be mined from the
execution trace/s such as eq. 1 using different trace mining
tools. An example trace from executing the flows in Fig. 1 is

({1, 3}, 1, 2, 5, 1, 5, 6, 2, 4, 6, 2) (1)

The numbers in the curly braces indicate that the transac-
tion cpu0:cache:rd_req and cpu1:cache:rd_req
are occured in the same timestamp, or in parallel. So the
true order between messages (or events) ‘1’ and ‘3’ can
not be known. We select seven tools from hardware and
software trace mining domains and evaluate their strengths
and weaknesses. We perform comprehensive experiments to
answer the following questions.

1) Which tools can deal with SoC communication or Trans-
action Level Model (TLM) traces?

2) Which tool/s can handle complex and concurrent com-
munication traces?

3) What are the factors that cause performance variation
among different tools on SoC traces?

To the best of our knowledge, this is the first paper that
presents a comprehensive study of different mining tools for
SoC transaction level traces. The contributions of this work
are two folds:

1Correct ordering of messages are referred as GT patterns



1) We present a benchmark trace set that have vital char-
acteristics of real-world SoC traces, which can be used
to comprehensively evaluate different SoC trace mining
methods

2) A thorough evaluation of seven representative trace
mining tools and algorithms on the benchmark

The paper is organized as follows. The next section gives a
brief review and classifies existing pattern mining methods.
Section III provides an overview of the selected mining
tools. Section IV describes the benchmark trace generation.
Section V presents details of the experiments and observa-
tions. The last section concludes the paper, and offers future
directions.

II. CLASSIFICATION OF TRACE MINERS

We review tools and techniques that mine sequential pat-
terns or extract models from traces. This list includes many
tools both from the software and hardware domains. The
classification of the existing tools broadly depends on their
underlying principles, methods, and output reports. We can
loosely separate them in the following classes, but an accurate
margin is often very tough to draw between them.
Automata Based Miners Automaton based approaches con-
struct Finite State Machines (FSMs) to interpret or synthesize
the traces in the form of a set of states and transitions.
The synthesized automaton can also be regarded as execution
models [4]–[6]. Often the model synthesis is formulated as
a constraint satisfaction problem, and SAT finds acceptable
solutions. Both tools [4] and [5] achieve similar objectives.
However, we choose [4], and refer as Trace2Model from this
category, comparing the number of citations it received than
other.
LTL Miners Producing Linear Temporal Logic (LTL) [9]
formula to correctly explain the traces or system behavior is
studied in many works. Model inference approach Synoptic [7]
first mines invariants from logs of sequential execution traces
where concurrency is recorded in the partial order. It then
generates an FSM that satisfies the mined invariants. It builds
execution models to enhance programmer comprehension of
the traces. Another tool called Texada [8] works with user-
specified templates in the form of LTL and produces instances
of that formula using some interestingness measures. Texada
is considered the representative tool from this category, as it
claims to perform better than many other tools.
Rule based Pattern Miners Analyzing traces statistically
and deriving rules for the events is a rich venue of research.
Some works from this category are [10], Perracotta [11],
FlowMiner [3]. These works scan the traces to deduce rules
that can formulate the event relation in the traces. Work
FlowMiner can find patterns from complex SoC trace and tool
Perracotta is a benchmark tool for many other tools. So both
of them are considered to be studied in this paper.
Assertion based Miners Assertions are interesting and useful
resource for SoC debug. Assertions are often extracted in the
form of sequential patterns [12], [13]. We consider [13] as a
representative tool which we refer to as TLMine.

General Sequential Pattern Miners Myriad of works from
the data mining community try to discover patterns in sequen-
tial data [14]. Agrawal and Srikant [15] first proposed their
works on frequent itemset mining in the form of sequential
pattern. There exists a handful of algorithms designed for
mining sequential pattern mining. Among many well-known
algorithms, PrefixSpan [16] is considered because of its per-
formance superiority.
Machine Learning Methods Machine Learning algorithms
have already been contributing to solving exciting pattern
mining problems. SoC traces possess strong temporal rela-
tions among the events. Therefore Recurrent Neural Networks
(RNN) have become an excellent tool to find the probabilistic
relations among the events, finally forming patterns. An ex-
ample work presented in [17] that utilizes Bayesian Inference
to interpret the execution model using the LTL formula. [18],
[19] are example works that employ a special type of RNN
for mining patterns or specifications. We take [18] because it
works on non-trivial SoC design traces.

III. SELECTED TRACE MINERS

For tool selection, we primarily focus on the generality
of each mechanism that deals with trace mining. We briefly
describe the tools listed below and summarize the tools’
critical features in Table I.

A. PrefixSpan

This is a sequential pattern mining tool based on a pattern-
growth algorithm that employs depth-first-search [14] tech-
nique to explore the candidate pattern search space. It takes
a minimum support threshold to identify frequent patterns of
single items in the sequence database. Then it generates more
extended patterns by left or right extensions sequentially. This
algorithm comes with a massive cost in memory usage but
avoids searching for patterns that do not exist in the database.
We obtain the implementation of this algorithm that is ported
with the open-source data mining library called SPMF [20].
For the trace shown in (1) PrefixSpan could find 2463 patterns
which also include four GT patterns (1, 2), (1, 5, 6, 2), (3, 4),
(3, 5, 6, 4).

B. Trace2Model

It works on system execution traces and synthesizes the
traces into a concise and abstract model. The synthesized
model is a finite state automaton (FSA). It finds the edge
transitions by solving a constraint problem using a Boolean
(SAT) solver. We utilize the incremental searching version of
the tool. It starts with N states, and then looks for (N +1)th

state to be satisfied by a C Bounded Model Checker. The
synthesized model helps to understand the system behavior
under a particular program execution. It utilizes a sliding
window technique as an optimization method for scalability.
Other than the window size w, there is another hyperparameter
l that controls the degree of generalization of the learned
automaton. It shows significant improvements over state merge
algorithms for generating behavioral models. The model in



Fig. 2: FSA model produced using the tool Trace2Model

Fig. 2 is resulted from the trace in (1). The numbers on the
edges represent the message indices of the example flows.

C. TLMine

TLMine is an episode mining framework that mines assertions
in the form of frequent episodes from simulation traces of
transaction-level models (TLMs). The algorithm works for
longer episodes incrementally. It describes an abstraction of
communication actions as events, and an episode is an ordered
sequence of events. It looks for episodes of multiple elements
for a given support2 and confidence thresholds. An episode
is called frequent if it appears at a certain number of time
windows. It introduces the confidence of an episode, which
is the ratio between an episode’s supports values and its
prefix. As they mine assertions, 100% confidence value is
employed for an episode to be considered an assertion. It
shows the benefit of applying the sliding window technique
over sequential pattern mining in terms of run time and number
of episodes mined. For the trace in (1), this tool could find
30 episodes. Among them {1, 2} is present as the only GT
pattern.

D. FlowMiner

FlowMiner can find meaningful patterns from the IP communi-
cation traces of an SoC execution. These patterns are supposed
to be utilized as flow specifications for IP communications
protocol debug. The specialty of this tool is that it mines
patterns from highly concurrent and interleaved traces. This
tool’s input is a set of execution traces over messages observed
in various communication interfaces in an SoC design. It
utilizes the well-known support confidence framework to find
binary rules which are also invariant over the traces. Further,
mined binary rules are chained to more extended patterns
through some inference techniques, while patterns could also
be treated as invariants. [3] also shows some optimization
techniques to reduce the mining complexity and improve the
mined patterns quality. The tool could find all the four GT
patterns and seven other patterns from the example trace.

E. Perracotta

This work mines temporal properties in the form of API
rules from program execution traces. It mines properties based
on some user-defined templates. There is an inference engine
that works on the input traces incorporating a set of property
templates. For each property template, an FSM is used to scan
the traces to find that property’s instance. This FSM plays a
vital role in making this tool scalable to a large set of traces.

The inferred properties go through further post-processing
before being reported to the user. There are eight different

2Please checkout to the original paper for definition.

property templates which are abstracts of a set of concrete
properties. At first Perracotta targets mining temporal prop-
erties of two events or values. Among the eight property
templates, we find alternating properties are most interesting
for the SoC communication pattern mining context as patterns
are also invariants. Therefore, we further restrict our discussion
on this tool to the alternating properties only. The paper also
describes a technique to produce alternating chains that is
the composition of alternating properties to deduce complex
rules out of smaller properties. This chaining saves massive
computation inherent to finding longer patterns from the
sequential traces.

The inference engine uses a metric satisfaction rate as a
threshold to rank alternating properties. A trace is partitioned
into small sub-traces, and then a conformity check is done
in these sub-traces to calculate the satisfaction rate. Fourteen
patterns are found from the example trace (1). Among them,
(3, 4) is the only GT pattern obtained in the form of alternating
patterns.

F. Texada

Texada mines program behavior in the form of LTL formulae.
The input to this tool is an LTL property template and execu-
tion log or traces. It outputs a set of concrete LTL formulae
which conforms to the property template. It utilizes an efficient
representation of input traces to avoid unnecessary traversal
over the traces. Property instances are validated over the traces
in a linear recursive fashion. Texada also includes some opti-
mization techniques such as state memoization for validating
property instances to further reduce the search complexity of
the tool. We use the LTL formula G(x −→ X(F(y))) to find
all the instances of x, y where "x is always followed
by y". With this pattern template, Texada finds 15 patterns.
Among them (1, 2), (1, 5), (1, 6), (3, 4), (3, 5), (3, 6), (5, 6),
(6, 2) are interesting as they conform to message orderings of
the GT .

G. YLSTM

Work in [18] (we refer to as YLSTM) utilizes LSTM (Long
Short Term Memory based on RNN) to extract sequential
patterns from SoC transaction-level traces. LSTM can capture
"long-term" dependencies and has many applications in natural
language processing, or sequence modeling works. Mined
patterns resemble dependencies between various events. This
paper exclusively focuses on the concurrent nature of SoC
traces. At first, a set of LSTM networks are trained on the SoC
traces for different lengths of sequences. The trained networks
can predict the next event upon given an input sequence of
the particular length it has been trained. However, the input
to a model that take length l sequences can have l! number
of candidate sequence, which can explode the search space.
To handle this phenomenon, all the unique events observed in
the traces are fed to the first LSTM model that only predicts
the next event with a probability threshold. The output of
this model (a set of sequences of length two) is then fed to
the next model for extracting sequences of length three. This



TABLE I: Tools Features

Tool Application Method Input Output

FlowMiner

Message flow mining, design
automation, SoC validation,
Work flow mining, Specification
inference

Association rule mining,
inference for chaining, use of
support-confidence framework

SoC concurrent communication
traces, Support confidence
threshold

Flow specifications
in the form of
sequential patterns

Perracotta
API rule mining, Mining
program behavior, Program
correctness checking

Uses property templates and
looks for template instances using
FSMs. Uses chaining to obtain
complex rules

Set of traces, Concurrency
not considered satisfaction
rate

property instances,
patterns

PrefixSpan
Sequential data analysis, click
stream, CyberSecurity

recursively grows frequent
patterns using depth first search,
uses projected database

Sequential data, takes multiple
traces support threshold

Sequential patterns
for that threshold

TLMine
Digital designs, assertion based
verification, transaction level
models

Mines episodes incrementally
for a given support, confidence
threshold, uses maximum
lifetime of a transaction for
windowing

TLM level traces, parallel
executions are interleaved in
the traces, support, confidence
threshold, maximum life
time of a transaction

assertions in
the form of
frequent episodes
of different length

Texada

Program behavior analysis,
model correction checking,
mining relation between
the events in the program
execution logs

Uses template, looks for
template instances, checks for
counter example over the traces

Multiple traces, concurrency
is expressed as interleaving
of events in the traces, LTL
formula or templates according
to the user’s interest

LTL formula
instances

Trace2Model
Model building from the
program execution traces for
hardware or software system

builds nfa and then increments
the states until counter example
is found in the trace, finally
converts the nfa to dfa

Sequential traces, concurrency
is not considered, degree of
generalization

FSM model that
conforms to the
observed traces

YLSTM
SoC validation, SoC system
protocol specification mining,
electronic design automation

trains LSTM networks to find the
sequential dependency among the
events in a trace, incrementally
extracts sequential patterns from
the LSTM models

SoC system level transaction
traces, probability threshold

Sequential patterns
that can describe the
SoC system protocol
specification

extraction continues until patterns are extracted from all the
trained models. For this approach to be practical, a lot of trace
data is needed for training. So result for the example trace is
not listed here.

IV. BENCHMARK PREPARATION

To the best of our knowledge, there is no SoC transaction-
level trace benchmark dataset publicly available. Therefore, we
describe how a benchmark trace dataset could be produced.
We plan to make this benchmark freely available. We divide
the generated traces into two major types. The first type is
synthetic traces, which include traces generated by simulating
concurrent executions of a set of message flows to mimic the
execution of SoC designs. For example, concurrency in flow
executions, parallelism of event occurrences, and recurrences
of flow instances are essential features of this synthetic trace
set’s traces. The primary motivation behind preparing this
trace set is to compare the quality of the mined patterns
with the GT patterns. The other type of traces are SoC
communication traces captured from simulating a multi-core
SoC model developed in gem5 [21] environment. The second

trace set allows us to validate mining methods in a practical
setting.
Synthetic Trace Generation We produce this set of traces
using ten message flows with a total of 64 flow instances as
Ground Truth (GT) patterns. Section I shows four such patterns
obtained from example flows in Fig. 1. It should be noted
that four GT patterns are found from the two example flows
which testifies the fact that some flows have branches. Similar
is true for the ten flows we consider to generate the synthetic
traces. The patterns are executed in different order to produce
three sets of synthetic traces listed in Table III. We intend
to simulate concurrency as well as recurrence to mimic the
actual SoC traces characteristics. This set’s benefit is that we
have GT patterns in stock to compare the patterns mined by
different methods.
GEM5 Trace Generation gem5 is a computer system sim-
ulation tool that can run in one of two modes: Full System
(FS) simulation and Syscall Emulation (SE). We collect traces
from both modes. Fig. 3 is a simplified multicore SoC model
developed to generate traces. It contains four x86 cores,
each of them has a private data cache (64kB) and a private
instruction cache (16kB). All cores share a 256kB level 2



TABLE II: Trace Mining Summary, RT = Run Time

Traces SNI SI MI FS Snoop Thread

Tool #bin. pat. RT #bin RT #bin RT #bin RT #bin RT #bin RT

FlowMiner 67 23s 122 36s 122 28s 430 1.5hr 464 134s 460 490s

Perracotta 30 3s 2 2.5s N/A 7 300s 45 75s 46 62s

Texada 58 2s 98 5s N/A 1711 280s 2052 5s 6601 50s

TLMine 12 184s 0 300s N/A – – 26 1528s – –

YLSTM 82 N/A 82 N/A N/A 178 N/A 180 N/A 208 N/A

TABLE III: Synthetic Traces

Trace Description

SNI

Single event, non-interleaving pattern traces. A GT pattern
is arbitrarily picked up from the gt pattern pool. It is
then executed from the start to the end event before the
next pattern is selected. For example, the flow instance
patterns from Fig. 1 are executed one after another. There
are 100 traces of 59 unique messages totalling a length
of 177114.

SI

Single event, interleaved pattern trace, where a few
patterns are selected (randomly) interleave among
themselves to mimic the idea that a single-core SoC is
running multiple tasks interleaving tasks by priority.
There are 100 traces of 59 unique messages. The
length of this set is 282192.

MI

Multi-event, interleaving patterns traces. As the name
suggests, multiple events might be present in each step,
such as first step of the trace in (1). This trace set
tries to mimic a multi-core system running multiple
tasks in parallel.

TABLE IV: Gem5 Traces

Trace Description

FS

One FS mode trace. Boots Linux kernel 4.1.3. No
workload is executed only kernel boots and exits. It has
59 different messages that comprise a length of
40736240.

Snoop
Activates simple snoop protocol implemented for
the traditional memory system. Two traces comprised
of 104 unique messages of length 732118 combined.

Threads

Two SE mode traces, one captured running Paterson
algorithm which is a traditional mutex algorithm.
Another trace is captured for distributing a matrix
addition. There 135 messages in the traces which has
combined length of 8094098.

cache. There is also a DDR3_1600_8x8 memory controller,
which has an address space of up to 4GB. These IPs are
connected via high-speed and concurrent buses that can han-
dle multiple requests simultaneously. IP blocks in this SoC
communicates with each other to realise various operations.
We execute different binaries on this bare bones setup to
extract realistic and sophisticated traces. We instrument the
model with 19 communication monitors to observe the packets
(unit of communication) over different communication links.
Table IV describes GEM5 simulation traces.

Core 0

L1I L1D

Coherent Bus

L2 Cache

Coherent Bus

Mem_ctrl:
DDR3_1600_8x8

Comm. Monitor

Master Port

Slave Port

Core 1

L1I L1D

Core 2

L1I L1D

Core 3

L1I L1D

Fig. 3: GEM5 model for tracing

V. EXPERIMENTS AND OBSERVATIONS

One of major goals of this study is to find which tools can
produce meaningful results for the benchmark traces within
a reasonable time limit. All the experiments are conducted
on system of 3.2GHz Intel core i5 processor, 8GB of RAM.
Traces FS, Snoop, Thread had multiple events in each step.
However, these traces are simplified to a single event each step
format so that tools Perracotta, Texada, TLMine, PrefixSpan
and YLSTM can be applied to them. Only tools that can
complete the mining within 2hrs time limit are listed in
Table II.

We only compare baseline performance; for example, the
run time and number two event properties. FlowMiner, Per-
racotta, and Texada do better in finding patterns in most
cases. The tree representation of property templates and state
memoization are the key factors for such shorter run time.
Tool PrefixSpan runs out of memory in all the experiments;
therefore, results are not listed. The main reason behind this
is the projected database it creates for every new pattern it
mines that takes up the available memory space. The approach
YLSTM needs training before any pattern can be extracted.
So the run time is not listed for this tool as the training
depends on the number of epochs for which it has been trained.
We run for 100 epochs for each of the traces for which the
tool takes 10minutes to 4hrs to complete the training. The
tool Trace2model produces complete execution scenarios that
takes more than 4 hours for the two set of synthetic traces,
and snooping traces. It contains 37 states for the SNI traces
which signifies that some temporal relations are not captured



Fig. 4: Model generated for SNI traces by Trace2Model

as there are 59 events in this set. Synthesized model in Fig. 4
shows many transitions are listed in the model that actually
are not real, they appears as they are temporally related. Tool
TLMine could not finish mining episodes from FS and Thread
traces so the 6th row of Table II are empty for this tool.
This phenomenon can be explained from the fact that for
every iteration of episode search, it produces a lot of invalid
candidate episodes, and search time increases exponentially.

In all the cases, Texada and Perracotta perform better in
terms of run time, but FlowMiner performs better in terms
of pattern number in some cases. Besides FlowMiner could
find patterns from the particular type of traces that exerts
concurrency inherently. It finds patterns with statistics which
helps us to find assertions from the traces. A special features of
tools FlowMiner and YLSTM is that they incorporate structural
features available in the SoC traces. This special attention
helps them to reduce the run time as well find more interesting
patterns. We put special attention to the tools YLSTM and
FlowMiner as they can find complex patterns in pattern length.
Flow specifications are mostly expressed in longer patterns;
therefore, these two tools show a higher potential for mining
message flows.

VI. CONCLUSION

This paper considers some representative works from differ-
ent domains that deal with different types of traces and apply
them to SoC communication traces. Comparative study results
have been listed. It is found that LTL miners are faster in run
time, but rule based miners provide more information about the
mined patterns. A benchmark of the SoC communication trace
dataset has also been presented to facilitate future research
on this topic. The performance of different tools on this
benchmark has been discussed. Crucial advancement in SoC
validation methods can be achieved by incorporating machine
learning with domain-specific features.

REFERENCES

[1] S. Mahmud, B. Olney, and R. Karam. Architectural Diversity: Bio-
Inspired Hardware Security for FPGAs. In Third International Verifica-
tion and Security Workshop (IVSW’18), pages 48–51, 2018.

[2] K. Goossens, B. Vermeulen, R. v. Steeden, and M. Bennebroek.
Transaction-based communication-centric debug. In First International
Symposium on Networks-on-Chip (NOCS’07), pages 95–106, 2007.

[3] Md Rubel Ahmed, Hao Zheng, Parijat Mukherjee, Mahesh C. Ketkar,
and Jin Yang. Mining Message Flows from System-on-Chip Execution
Traces, In 22nd International Symposium on Quality Electronic Design
(ISQED’21), pages 374-380, 2021.

[4] Natasha Jeppu, Tom Melham, Daniel Kroening, and John O’Leary.
Learning concise models from long execution traces. In DAC ’20, June
2020.

[5] Hao Zheng, Md Rubel Ahmed, Parijat Mukherjee, Mahesh C. Ketkar,
and Jin Yang. Model synthesis for communication traces of system-on-
chip designs, arXiv-2021.

[6] Glenn Ammons, Rastislav Bodík, and James R. Larus. Mining specifi-
cations. POPL ’02, page 4–16, New York, NY, USA, 2002. Association
for Computing Machinery.

[7] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and
Michael D. Ernst. Leveraging existing instrumentation to automatically
infer invariant-constrained models. In Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ESEC/FSE ’11, pages 267–277, 2011.

[8] C. Lemieux, D. Park, and I. Beschastnikh. General ltl specification
mining (t). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 81–92, 2015.

[9] E. A. Emerson. Handbook of Theoretical Computer Science: Volume B:
Formal Models and Semantics. Elsevier, 995-1072.

[10] W. Li, A. Forin, and S. A. Seshia. Scalable specification mining for
verification and diagnosis. In Design Automation Conference, pages
755–760, 2010.

[11] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and
Manuvir Das. Perracotta: Mining temporal api rules from imperfect
traces. In Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, page 282–291, New York, NY, USA, 2006.
Association for Computing Machinery.

[12] P. Chang and L. . Wang. Automatic assertion extraction via sequential
data mining of simulation traces. In 2010 15th Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 607–612, 2010.

[13] Lingyi Liu and Shobha Vasudevan. Automatic generation of system
level assertions from transaction level models. Journal of Electronic
Testing, 29(5):669–684, Oct 2013.

[14] Philippe Fournier-Viger, J. Lin, R. Kiran, Y. Koh, and R. Thomas. A
survey of sequential pattern mining. 2017.

[15] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of the 20th
International Conference on Very Large Data Bases, VLDB ’94, page
487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers
Inc.

[16] Jian Pei, Jiawei Han, B. Mortazavi-Asl, Jianyong Wang, H. Pinto,
Qiming Chen, U. Dayal, and Mei-Chun Hsu. Mining sequential patterns
by pattern-growth: the prefixspan approach. IEEE Transactions on
Knowledge and Data Engineering, 16(11):1424–1440, 2004.

[17] A. Mrowca, M. Nocker, S. Steinhorst, and S. Günnemann. Learning
temporal specifications from imperfect traces using bayesian inference.
In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages
1–6, 2019.

[18] Y. Cao, P. Mukherjee, M. Ketkar, J. Yang, and H. Zheng. Mining
message flows using recurrent neural networks for system-on-chip
designs. In 2020 21st International Symposium on Quality Electronic
Design (ISQED), pages 389–394, 2020.

[19] Tien-Duy B. Le and David Lo. Deep specification mining. In
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, pages 106–117, New York,
NY, USA, 2018. ACM.

[20] Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, Azadeh
Soltani, Cheng-Wei Wu, and Vincent S. Tseng. Spmf: A java open-
source pattern mining library. J. Mach. Learn. Res., 15(1):3389–3393,
January 2014.

[21] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5
simulator. SIGARCH Comput. Archit. News, 39(2):1–7, August 2011.


