
Model Synthesis for Communication Traces of System-on-Chip Designs
Submitted to GLSVLSI-2021

Presenter: Md Rubel Ahmed

Motivation
 System level model is important for SoC design

analysis, and validation

 Inferring execution model from SoC communication

traces is challenging because:

 Prevalent concurrency in the traces

 Lack of observability

 False dependency due to parallelism

Method
1. Building Causality Graph

2. Solving Constraints

3. Deriving Model

Experiments & Results

({1, 3}, 1, 2, 5, 1, 5, 6, 2, 4, 6, 2)

Sup(n) = ∑ c 𝑛𝑛 → 𝑛𝑛𝑛
all n →n’

Sup(n) = ∑ 𝑐𝑐 𝑛𝑛 → 𝑛𝑛𝑛
all n →n’

0 ≤ 𝑐𝑐 𝑛𝑛 → 𝑛𝑛𝑛 ≤ Sup(n)

For each node n and outgoing edge 𝑛𝑛 → 𝑛𝑛𝑛

For each node 𝑛𝑛𝑛 and outgoing edge 𝑛𝑛 → 𝑛𝑛𝑛

For each edge 𝑛𝑛 → 𝑛𝑛′

Traces #Messages Length #States Runtime(s)

small
22

460 31 84
920 31 78

1840 31 70

Large
60

2180 92 75
4360 87 72
8720 100 62

Authors:
Dr. Hao Zheng1

Md Rubel Ahmed1

Parijat Mukherjee2

Mahesh C. Ketkar2

Jin Yang2

1: USF, 2: Intel®

Future Directions

1. Pattern reduction
2. Incorporate user’s insight to

guide the search

References:
1. Memory System in gem5.http://pages.cs.wisc.edu/ swilson/gem5-docs/gem5MemorySystem.html. Online;

accessed November 16, 2020
2. The Z3 Theorem Prover. https://github.com/Z3Prover/z3, 2020. Online; accessed 17 November 2020.

visit our lab page Retrieve preprint

Fig. 1: A simple SoC with two cores and other peripherals

Fig. 2: CPU downstream read flows(up), and a sample execution trace (below)

Fig. 3: Model synthesis goal

Fig. 4: Solutions suggested by Z3[2] Fig. 5: Reduced model (FSA)

Table. 1: Models from synthetic traces

Fig. 6: Simulation trace generation on GEM5

Fig. 7: Message flow specification in GEM5 documentation [1]

Fig. 8: Two flows from the synthesized models

	Slide Number 1

