Motivation

- System level model is important for SoC design analysis, and validation
- Inferring execution model from SoC communication traces is challenging because:
 - Prevalent concurrency in the traces
 - Lack of observability
 - False dependency due to parallelism

Fig. 1: A simple SoC with two cores and other peripherals

Message types

- (cpu0:cache:rd_req)
- (cache:cpu0:rd_resp)
- (cpu1:cache:rd_req)
- (cache:cpu1:rd_resp)
- (cache:mem:rd_req)
- 6 (mem:cache:rd_resp)

Example flows

Fig. 2: CPU downstream read flows(*up*), and a sample execution trace (*below*)

({1, 3}, 1, 2, 5, 1, 5, 6, 2, 4, 6, 2)

Fig. 3: Model synthesis goal

Authors: visit our lab page 😳 Dr. Hao Zheng¹ Md Rubel Ahmed¹ Parijat Mukherjee² Mahesh C. Ketkar² Jin Yang² 1: USF, 2: Intel[®]

Model Synthesis for Communication Traces of System-on-Chip Designs

Submitted to GLSVLSI-2021 Presenter: Md Rubel Ahmed

Fig. 4: Solutions suggested by Z3[2]

References:

- 1. Memory System in gem5.http://pages.cs.wisc.edu/ swilson/gem5-docs/gem5MemorySystem.html. Online; accessed November 16, 2020
- 2. The Z3 Theorem Prover. https://github.com/Z3Prover/z3, 2020. Online; accessed 17 November 2020.

Fig. 5: Reduced model (FSA)

small

Large

2.

Experiments & Results

#Messages	Length	#States	Runtime(s)
22	460	31	84
	920	31	78
	1840	31	70
60	2180	92	75
	4360	87	72
	8720	100	62

Table. 1: Models from synthetic traces

Fig. 6: Simulation trace generation on GEM5

Fig. 7: Message flow specification in GEM5 documentation [1]

Fig. 8: Two flows from the synthesized models

Future Directions

Pattern reduction Incorporate user's insight to guide the search

Retrieve preprint 🙄